Study of the θ point by enumeration of self-avoiding walks on the triangular lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 193287
(http://iopscience.iop.org/0305-4470/19/16/027)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:23

Please note that terms and conditions apply.

Study of the θ point by enumeration of self-avoiding walks on the triangular lattice

Vladimir Privman
Department of Physics, Clarkson University, Potsdam, New York 13676, USA

Received 21 January 1986

Abstract

We report series expansion analyses of the self-avoiding walks with nearestneighbour bond interactions. The estimates $2 \nu_{1}=1.07 \pm 0.05$ and $\phi=0.64 \pm 0.05$ for the correlation and crossover exponents at the θ point were obtained by examining the number of walks and the end-to-end distance data up to 16 steps on the triangular lattice.

1. Introduction

The collapse transition of linear polymers has been subject to numerous theoretical investigations: see a review in de Gennes' (1979) book (more recent literature will be cited below). Specifically, let us concentrate on the standard lattice model of this phenomenon. An N-step self-avoiding walk (saw) connects $N+1$ lattice sites. Let B denote the number of nearest-neighbour pairs among these $N+1$ sites and assign a Boltzmann factor ε per pair. Usually, only an excess number of nearest-neighbour bonds, $B-N$, is counted (see, e.g., Baumgärtner 1982) and with

$$
\begin{equation*}
\varepsilon=\exp (-E / k T) \tag{1.1}
\end{equation*}
$$

the energy E models repulsion ($E>0,0<\varepsilon<1$) or attraction ($E<0, \varepsilon>1$) at every contact of the chain with itself. However, we will not expand on the details of the interpretation: we assign a factor ε^{B} with $0<\varepsilon<\infty$.

For a given saw, w, let $r(w)$ denote the end-to-end distance, $|w|$ denote the number of steps and $B(w)$ the number of nearest-neighbour pairs of sites as described above. Then we can form a weighted rms end-to-end distance of N-step walks, $\left\langle R_{N}^{2}\right\rangle^{1 / 2}$, via

$$
\begin{equation*}
\left\langle R_{N}^{2}\right\rangle \equiv\left(\sum_{|w|=N} r^{2}(w) \varepsilon^{B(w)}\right)\left(\sum_{|w|=N} \varepsilon^{B(w)}\right)^{-1} \tag{1.2}
\end{equation*}
$$

For convenience, we will omit \rangle in the remainder of the paper.
It is generally believed that for large N,

$$
\begin{equation*}
R_{N}^{2} \sim N^{2 \nu} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\nu=\nu \text { (SAW) } & \text { for } 0<\varepsilon<\varepsilon_{t} \\
\nu=\nu_{t} & \text { at } \varepsilon=\varepsilon_{t} \\
\nu=1 / d & \text { for } \varepsilon>\varepsilon_{t} . \tag{1.6}
\end{array}
$$

The range (1.4) corresponds to the 'excluded volume' regime of repulsion or weak attraction. The range (1.6) corresponds to a 'collapsed' strongly self-attracting chain. On the borderline (1.5), a special θ point growth exponent ν_{1} is expected. Near ε_{t}, a 'tricritical' scaling behaviour of R_{N}^{2} is anticipated:

$$
\begin{equation*}
R_{N}^{2} \approx N^{2 \nu} F\left(\Delta \varepsilon N^{\phi}\right) \tag{1.7}
\end{equation*}
$$

where $\Delta \varepsilon=\varepsilon-\varepsilon_{t}$.
Verification of the above 'maximal' set of theoretical predictions by approximation methods or numerical techniques encountered substantial difficulties. Let us mention first the issue of the nature of the collapsed phase. Several authors attempted to understand the properties of the most compact walks which dominate for $\varepsilon \gg \varepsilon_{t}$. Studies by Nagle (1974, 1985), Gujrati (1982) and Schmalz et al (1984) (see also references cited therein) indicate that the collapsed walks have a finite entropy (per step) and may have non-trivial properties which are not fully understood. Unfortunately, our series analysis study reported in the next two sections produces no useful results in the 'collapsed' regime.

In the θ regime, one is interested in validating the scaling relation (1.7) and estimating ν_{t} and ϕ. In three dimensions, scaling behaviours are complicated by logarithmic corrections since $d=3$ is the upper critical dimensionality for 'tricriticality': for numerical work see Rapaport (1974, 1977), Webman et al (1981), Kremer et al (1982), Bishop and Michels (1986) and references therein. However, we consider the two-dimensional θ point model here. ε expansions to the next-to-zeroth order by Stephen and McCauley (1973) and Stephen (1975) gave

$$
\begin{equation*}
2 \nu_{t}=1.01 \quad \phi \simeq 0.636 \tag{1.8}
\end{equation*}
$$

in $d=2$. Kholodenko and Freed (1984) arrived at a different result, namely

$$
\begin{equation*}
2 \nu_{t} \simeq 1.10 \tag{1.9}
\end{equation*}
$$

Ishinabe (1985) estimated

$$
\begin{equation*}
2 \nu_{t} \simeq 1.006 \pm 0.02 \tag{1.10}
\end{equation*}
$$

by series analysis of the square lattice endpoint distribution data. However, Derrida and Saleur (1985) proposed

$$
\begin{equation*}
2 \nu_{t} \simeq 1.10 \pm 0.02 \tag{1.11}
\end{equation*}
$$

from finite-size scaling studies of lattice strips. Monte Carlo work by Tobochnik et al (1982) and Baumgärtner (1982) did not lead to definitive exponent estimates. Baumgärtner (1982) reports consistency with the scaling form (1.7) provided exponent values (1.8) are used.

Our study was motivated in part by the above uncertainty in the θ point exponent values. In $\S \S 2$ and 3 , we report series analyses leading to

$$
\begin{equation*}
2 \nu_{t}=1.07 \pm 0.05 \quad \phi=0.64 \pm 0.05 \tag{1.12}
\end{equation*}
$$

However, it should be pointed out that the experimental ν value of Vilanove and Rondelez (1980) for $d=2$ linear polymers which are probably in a semi-collapsed state is

$$
\begin{equation*}
2 \nu=1.12 \pm 0.02 \tag{1.13}
\end{equation*}
$$

Furthermore, Coniglio et al (1985) recently advanced some non-rigorous arguments for ν_{t} being equal to ν (IGSAW). The value of the latter exponent is

$$
\begin{equation*}
2 \nu(\text { IGSAW })=1.134 \pm 0.006 \tag{1.14}
\end{equation*}
$$

according to Kremer and Lyklema (1985). Finally, note that some further concluding discussion may be found in $\S 3$.

2. Triangular lattice series

We describe here the derivation of the series and also analyses of the global features of the data. The calculation involved a computer enumeration of the number, $c(N, B)$, and the sum of the squared end-to-end distances, $s(N, B)$, of all N-step saw having exactly B nearest-neighbour pairs. Relation (1.2) reduces to

$$
\begin{equation*}
R_{N}^{2} \equiv\left(\sum_{B} s(n, B) \varepsilon^{B}\right)\left(\sum_{B} c(N, B) \varepsilon^{B}\right)^{-1} \tag{2.1}
\end{equation*}
$$

The values of $c(N, B)$ and $s(N, B)$ for $N \leqslant 16$ are listed in table 1 for the triangular lattice. We have similar data for $N \leqslant 21$ for the square lattice (not reported here, but available upon request). However, due to the usual strong even-odd oscillations in various estimates, we found the square lattice data of this length unsuitable for an unambiguous analysis. While our work was in progress, we learned that Ishinabe (1985) enumerated a related distribution of the end-to-end distances, to order $N=20$, on the square lattice. His ν_{t} estimate (1.10) is reasonably consistent with (1.8) and (1.12). Let us focus on the triangular lattice data from now on.

We form effective exponent estimates:

$$
\begin{equation*}
2 \nu(N)=\ln \left(R_{N}^{2} / R_{N-1}^{2}\right) / \ln (N / N-1) \tag{2.2}
\end{equation*}
$$

These are plotted for $0<\varepsilon<4$ in figure 1 . The curves for $N=13,14,15,16$ are very close. However, in figure 2, we plotted the deviations from the average:

$$
\begin{equation*}
\Delta \nu(N)=\nu(N)-\frac{1}{4} \sum_{K=13}^{16} \nu(K) \tag{2.3}
\end{equation*}
$$

for $0<\varepsilon<3$. For $\varepsilon \leqslant 1$, the effective exponent values are close to

$$
\begin{equation*}
2 \nu(\text { SAW })=1.5 \tag{2.4}
\end{equation*}
$$

which value is believed to be exact (Nienhuis 1982). There are two intersection regions of the $2 \nu(N)$ curves: at $\varepsilon \approx 0.9$ and slightly below 1.5 . We will discuss the intersections in detail in a moment. For $\varepsilon \geqslant 1.7$, one would anticipate some manifestation of the 'collapsed' behaviour. However, the $2 \nu(N)$ curves show no trend towards $2 \nu=2 / d=1$ (this includes $\varepsilon>4$, not shown in figure 1). Furthermore, the values of $2 \nu<1$ are unphysical since asymptotically they would imply an infinite density. Thus, the $N \leqslant 16$ data are far from the regime of the asymptotic simple power-law behaviour (1.3) with (1.6). The same is true for the $N \leqslant 21$ square lattice data, in the 'collapsed' regime (see also Ishinabe 1985).

Since $\nu(\mathrm{SAW})>\nu_{t}>1 / d$, the $N \rightarrow \infty$ limit of the $\nu(N)$ in (2.2) is, ideally, a step function. The curves in figure 1 indeed resemble a rounded step, at least for $\varepsilon<2.3$. It is well known that the intersections of the finite N curves approximate ν_{t} and ε_{t}. If relation (1.7) were exact, the $\nu(N)$ would intersect at $\left(\varepsilon_{t}, \nu_{t}\right)$. However, (1.7) is

Table 1. The values of $c(N, B)$ and $s(N, B)$ for the triangular lattice (definitions are given in the first paragraph of $\S 2$).

N	B	$c(N, B) / 6$	$s(N, B) / 6$
1	1	1	1
2	2	3	10
2	3	2	2
3	3	9	59
3	4	8	28
3	5	6	10
4	4	27	280
4	5	32	218
4	6	24	110
4	7	20	46
5	5	79	1179
5	6	122	1282
5	7	108	874
5	8	76	440
5	9	70	202
6	6	233	4614
6	7	422	6416
6	8	470	5472
6	9	366	3512
6	10	264	1778
6	11	216	798
6	12	20	34
7	7	679	17145
7	8	1458	29148
7	9	1766	29356
7	10	1746	22666
7	11	1322	14274
7	12	848	6756
7	13	672	3068
7	14	156	408
8	8	1983	61398
8	9	4824	123198
8	10	6758	143892
8	11	6902	126198
8	12	6536	93608
8	13	4642	55602
8	14	2760	25336
8	15	2060	11912
8	16	890	2938
9	9	5759	213705
9	10	15824	494610
9	11	24290	654390
9	12	28310	648270
9	13	26898	533360
9	14	23400	371234
9	15	16478	213284
9	16	9000	96004
9	17	6808	48080
9	18	3532	14724
9	19	390	1078
10	10	16717	727506
10	11	50898	1907224
10	12	86396	2820456

Table 1. (continued)

N	B	$c(N, B) / 6$	$s(N, B) / 6$
10	13	107900	3092612
10	14	114940	2823622
10	15	101628	2170648
10	16	82360	1438478
10	17	58074	814108
10	18	31770	380694
10	19	22100	187298
10	20	12606	65282
10	21	3472	12720
11	11	48387	2432583
11	12	162158	7124122
11	13	299210	11637124
11	14	406820	13996112
11	15	457252	13912864
11	16	448830	11812076
11	17	376962	8609946
11	18	288266	5504916
11	19	205522	3155826
11	20	116108	1512224
11	21	71966	714902
11	22	42944	281012
11	23	19414	86854
11	24	984	3296
12	12	139897	8014812
12	13	510966	25930666
12	14	1021548	46357226
12	15	1489314	60608222
12	16	1796284	65162520
12	17	1857536	59881630
12	18	1708278	47958262
12	19	1377572	33571350
12	20	1024262	21207402
12	21	720920	12190756
12	22	428574	5967984
12	23	239660	2757352
12	24	150838	1211560
12	25	78336	427044
12	26	15216	63454
13	13	403771	26082721
13	14	1597412	92378774
13	15	3435010	179367758
13	16	5359986	253158606
13	17	6855400	292266230
13	18	7555808	288770016
13	19	7318950	249227882
13	20	6385058	190558434
13	21	5025528	130606314
13	22	3666222	81666880
13	23	2524966	46790946
13	24	1555802	23432180
13	25	861174	11046444
13	26	516332	4963332
13	27	286056	1902572
13	28	103164	523272
13	29	5142	21026

Table 1. (continued)

N	B	$c(N, B) / 6$	$s(N, B) / 6$
14	14	1164057	83994856
14	15	4957204	323205792
14	16	11413472	677195416
14	17	18960690	1025865544
14	18	25681992	1264787622
14	19	29875510	1333923906
14	20	30682280	1232690046
14	21	28185274	1011553284
14	22	23711714	750394112
14	23	18301294	506326906
14	24	13140314	313400192
14	25	8899388	179106248
14	26	5597540	92487766
14	27	3193382	44486780
14	28	1786220	19951430
14	29	1007908	8226906
14	30	495932	2983856
14	31	77704	382760
15	15	3351801	268058345
15	16	15289564	1113468250
15	17	37520218	2503765484
15	18	66121822	4050807564
15	19	94507440	5309582442
15	20	115778668	5945584376
15	21	125093030	5841698720
15	22	121351606	5114269874
15	23	107169414	4047955194
15	24	87694004	2935087140
15	25	66494840	1953540554
15	26	47101304	1199211312
15	27	31745210	689498134
15	28	20026096	363448246
15	29	11808450	178109300
15	30	6421932	80982364
15	31	3579698	35048326
15	32	1949932	13991636
15	33	587184	3405708
15	34	35384	173532
16	16	9641893	848778926
16	17	46899988	3785135088
16	18	122202704	9091075422
16	19	227692466	15642072152
16	20	342473560	21712426778
16	21	440443600	25705217072
16	22	499333190	26713469364
16	23	508231584	24784985438
16	24	471901204	20830892272
16	25	404056292	16036287726
16	26	323099256	11408053556
16	27	241147298	7504464182
16	28	169487916	4598991504
16	29	113922336	2658209098
16	30	71780088	1420524978
16	31	43086988	709751386

Table 1. (continued)

\boldsymbol{N}	B	$c(N, B) / 6$	$s(N, B) / 6$
16	32	23985674	333080874
16	33	12803518	145981378
16	34	7139838	61304358
16	35	3043860	20594620
16	36	515134	2974792

Figure 1. Effective 2ν estimates as functions of ε for $N=13, \ldots, 16$ (see relation (2.2)).
only approximate for finite N. A natural interpretation is to identify the intersection region at $\varepsilon>1$ with the centre of the θ region. Thus

$$
\begin{equation*}
\varepsilon_{t} \simeq 1.5(\pm 0.1) \tag{2.5}
\end{equation*}
$$

for the triangular lattice. The appropriate intersection points of $\nu(N)$ with $\nu(N-1)$ are listed in table 2 , for $N=8,9, \ldots, 16$. The sequences of this sort are frequently used in ratio-type series analyses and in phenomenological renormalisation calculations. In the present case, however, the behaviour is not regular so that the conventional extrapolation methods cannot be employed. We will devise an appropriate procedure in § 3, to accurately estimate ν_{t} (and also ϕ).

Intersections at $\varepsilon<1$ occur well within the self-avoiding regime, at least for $N \leqslant 16$. A possible interpretation is that one or several correction-to-scaling terms change sign at $\varepsilon \simeq 0.9$. There is an ambiguity, however, because the 2ν coordinates of the intersection points, listed in table 2 , drift monotonically away from the conjectured exact value (2.4) $2 \nu=1.5$, as N increases. At $\varepsilon \equiv 1$, for ordinary SAw, elaborate series analyses (Djordjevic et al 1983, Privman 1984) of the triangular lattice data, with allowance for corrections to scaling, found no inconsistency with $2 \nu \equiv 1.5$. We conclude that the intersection region at $\varepsilon \simeq 0.9$ may be an artificial feature. It may disappear

Figure 2. Deviations $2 \Delta \nu$ (defined by (2.3)) as functions of ε for $N=13, \ldots, 16$.

Table 2. $(\varepsilon, 2 \nu)$ coordinates at the intersections of $\nu(N)$ and $\nu(N-1)$ curves (defined by relation (2.2)).

N	ε	2ν	ε	2ν
8	1.299979	1.310288	0.799248	1.510766
9	1.255858	1.333753	0.824721	1.505114
10	1.503892	1.180515	0.851098	1.499420
11	1.345913	1.283589	0.865564	1.496375
12	1.378098	1.262038	0.876563	1.494153
13	1.449901	1.209753	0.884996	1.492527
14	1.416490	1.235155	0.890724	1.491476
15	1.438220	1.218080	0.895131	1.490711
16	1.469684	1.192091	0.898298	1.490191

or drift into the θ region for higher N values: further numerical studies are needed to clarify this issue. Let us point out that previous studies in $d=2$ (Baumgärtner 1982, Derrida and Saleur 1985, Ishinabe 1985) explored only the region $\varepsilon>1$, corresponding to negative energy E in (1.1).

3. θ point exponents

The 2ν sequence corresponding to $\varepsilon>1$ in table 2 is rather irregular. The overall trend is toward 2ν values below 1.2. However, the oscillations show no definite pattern. By the well known principle, since we cannot 'beat' the irregularities by conventional extrapolation techniques, let us 'join' them! We adopt the strategy of calculating a very large number of approximants to $2 \nu_{t}$, with an expectation that what was an
irregularity in a particular sequence will become a spread in the values of 2ν. Thus we generalise (2.2) to

$$
\begin{equation*}
2 \nu(N, k)=\ln \left(R_{N}^{2} / R_{N-k}^{2}\right) / \ln (N / N-k) \tag{3.1}
\end{equation*}
$$

We then calculate the 2ν coordinate of the appropriate intersection point (if it exists) of $2 \nu(N, k)$ with $2 \nu\left(N^{\prime}, k^{\prime}\right)$, for all possible combinations of different (N, k) pairs with $N^{\prime}, N=12, \ldots, 16$ and $k^{\prime}, k=1, \ldots, 4$. In figure 3 more than 200 such points are plotted against $1 / N_{\text {eff }}$, where

$$
\begin{equation*}
N_{\mathrm{eff}}=\frac{1}{2}\left(N+N^{\prime}\right) \tag{3.2}
\end{equation*}
$$

This choice is the simplest symmetric combination. We use N, but not k, in (3.2) because empirically the $2 \nu(N, k)$ curves are much less sensitive to k than to N, provided $k \ll N$.

Figure 3. Estimates of $2 \nu_{\mathrm{I}}$ against $1 / N_{\text {eff }}$ defined in $\S 3$.
Figure 3 is rather difficult to read in detail because the points are very close. However, we examined a considerably enlarged version of it; we located the most populated range of 2ν for each $1 / N_{\text {eff }}$ value and extrapolated linearly to $1 / N_{\text {eff }}=0$. We propose

$$
\begin{equation*}
2 \nu_{t}=1.07 \pm 0.05 \tag{3.3}
\end{equation*}
$$

In order to estimate the crossover exponent ϕ in (1.7), we consider the derivative $\partial R_{N}^{2} / \partial \varepsilon$ which obeys the scaling law

$$
\begin{equation*}
\partial R_{N}^{2} / \partial \varepsilon \approx N^{2 \nu_{l}+\phi} G\left(\Delta \varepsilon N^{\phi}\right) . \tag{3.4}
\end{equation*}
$$

Since, by all the estimates described in $\S 1,2 \nu_{t}+\phi>1.6$, the effective exponent values defined in analogy with (3.1) now approximate not a rounded step, but a rounded non-symmetric peak. This expectation is, indeed, confirmed by plotting several ($2 \nu_{t}+$ $\phi)(N, k)$ against ε curves. (This plot is not presented here.) However, these peaked
effective exponent curves, for different (N, k), typically do not intersect for $N \leqslant 16$ and when they do, regarding the intersection coordinates as an approximation to $2 \nu_{t}+\phi$ is ambiguous. In view of the above, we used the intersection points of $\nu(N, k)$, the same as in figure 3. At the ε value of the intersection of $\nu(N, k)$ with $\nu\left(N^{\prime}, k^{\prime}\right)$, where now $N \geqslant N^{\prime}$ is imposed, we calculated

$$
\begin{equation*}
\ln \left(\frac{\partial R_{N}^{2} / \partial \varepsilon}{\partial R_{N-k}^{2} / \partial \varepsilon}\right)\left[\ln \left(\frac{N}{N-k}\right)\right]^{-1}-2 \nu(N, k) \tag{3.5}
\end{equation*}
$$

which approximates the exponent ϕ. Here $N \geqslant N^{\prime}$ is needed explicitly since we preferred to use non-symmetric approximants giving more weight to less truncated series. The resulting ϕ values are plotted against $1 / N_{\text {eff }}$ in figure 4 . As with $2 \nu_{t}$, we actually used an enlarged version to extrapolate towards $1 / N_{\text {eff }}=0$: we get

$$
\begin{equation*}
\phi=0.64 \pm 0.05 \tag{3.6}
\end{equation*}
$$

In summary, we have demonstrated that series enumerations can be used to study the θ point phenomena. Our results are conclusive in the saw and θ regimes, confirming the 'tricritical' theoretical picture (de Gennes 1979). We reported the first numerical estimation of the exponent ϕ in $d=2$. Our $2 \nu_{t}$ and ϕ ranges are close to the ε expansion values. The $2 \nu_{t}$ estimate is consistent with those of Ishinabe (1985) and Derrida and Saleur (1985).

Figure 4. Estimates of ϕ against $1 / N_{\text {eff }}$, see (3.5).

Acknowledgments

The author wishes to acknowledge instructive discussions with Professors F Family and L S Schulman.

References

Baumgärtner A 1982 J. Physique 43 1407-11
Bishop M and Michels J P J 1986 J. Chem. Phys. in press
Coniglio A, Jan N, Majid I and Stanley H E 1985 Preprint
de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)
Derrida B and Saleur H 1985 J. Phys. A: Math. Gen. 18 L1075-9
Djordjevic Z V, Majid I, Stanley H E and dos Santos R J 1983 J. Phys. A: Math. Gen. 16 L519-23
Gujrati P D 1982 J. Stat. Phys. 28 441-72
Ishinabe T 1985 J. Phys. A: Math. Gen. 18 3181-7
Kholodenko A L and Freed K F 1984 J. Chem. Phys. 80 900-24
Kremer K, Baumgärtner A and Binder K 1982 J. Phys. A: Math. Gen. 15 2879-97
Kremer K and Lyklema J W 1985 J. Phys. A: Math. Gen. 18 1515-31
Nagle J F 1974 Proc. R. Soc. A 337 569-89

- 1985 J. Stat. Phys. 38 531-40

Nienhuis B 1982 Phys. Rev. Lett. 49 1062-5
Privman V 1984 Physica 123A 428-42
Rapaport D C 1974 Phys. Lett. 48A 339-40

- 1977 J. Phys. A: Math. Gen. 10 637-47

Schmalz T G, Hite G E and Klein D J 1984 J. Phys. A: Math. Gen. 17 445-53
Stephen M J 1975 Phys. Lett. 53A 363-4
Stephen M J and McCauley J L 1973 Phys. Lett. 44A 89-90
Tobochnik J, Webman I, Lebowitz J L and Kalos M H 1982 Macromol. 15 549-53
Vilanove R and Rondelez F 1980 Phys. Rev. Lett. 45 1502-4
Webman I, Lebowitz J L and Kalos M H 1981 Macromol. 14 1495-501

