

Home Search Collections Journals About Contact us My IOPscience

Study of the  $\theta$  point by enumeration of self-avoiding walks on the triangular lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1986 J. Phys. A: Math. Gen. 19 3287 (http://iopscience.iop.org/0305-4470/19/16/027)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 31/05/2010 at 19:23

Please note that terms and conditions apply.

# Study of the $\theta$ point by enumeration of self-avoiding walks on the triangular lattice

Vladimir Privman

Department of Physics, Clarkson University, Potsdam, New York 13676, USA

Received 21 January 1986

Abstract. We report series expansion analyses of the self-avoiding walks with nearestneighbour bond interactions. The estimates  $2\nu_t = 1.07 \pm 0.05$  and  $\phi = 0.64 \pm 0.05$  for the correlation and crossover exponents at the  $\theta$  point were obtained by examining the number of walks and the end-to-end distance data up to 16 steps on the triangular lattice.

# 1. Introduction

The collapse transition of linear polymers has been subject to numerous theoretical investigations: see a review in de Gennes' (1979) book (more recent literature will be cited below). Specifically, let us concentrate on the standard lattice model of this phenomenon. An N-step self-avoiding walk (sAw) connects N+1 lattice sites. Let B denote the number of nearest-neighbour pairs among these N+1 sites and assign a Boltzmann factor  $\varepsilon$  per pair. Usually, only an excess number of nearest-neighbour bonds, B-N, is counted (see, e.g., Baumgärtner 1982) and with

$$\varepsilon = \exp(-E/kT) \tag{1.1}$$

the energy E models repulsion  $(E > 0, 0 < \varepsilon < 1)$  or attraction  $(E < 0, \varepsilon > 1)$  at every contact of the chain with itself. However, we will not expand on the details of the interpretation: we assign a factor  $\varepsilon^{B}$  with  $0 < \varepsilon < \infty$ .

For a given sAW, w, let r(w) denote the end-to-end distance, |w| denote the number of steps and B(w) the number of nearest-neighbour pairs of sites as described above. Then we can form a weighted RMS end-to-end distance of N-step walks,  $\langle R_N^2 \rangle^{1/2}$ , via

$$\langle R_N^2 \rangle \equiv \left( \sum_{|w|=N} r^2(w) \varepsilon^{B(w)} \right) \left( \sum_{|w|=N} \varepsilon^{B(w)} \right)^{-1}.$$
(1.2)

For convenience, we will omit  $\langle \rangle$  in the remainder of the paper.

It is generally believed that for large N,

$$R_N^2 \sim N^{2\nu} \tag{1.3}$$

where

$$\nu = \nu(sAW)$$
 for  $0 < \varepsilon < \varepsilon_t$  (1.4)

$$\nu = \nu_t$$
 at  $\varepsilon = \varepsilon_t$  (1.5)

$$\nu = 1/d$$
 for  $\varepsilon > \varepsilon_t$ . (1.6)

0305-4470/86/163287 + 11\$02.50 © 1986 The Institute of Physics 3287

The range (1.4) corresponds to the 'excluded volume' regime of repulsion or weak attraction. The range (1.6) corresponds to a 'collapsed' strongly self-attracting chain. On the borderline (1.5), a special  $\theta$  point growth exponent  $\nu_t$  is expected. Near  $\varepsilon_t$ , a 'tricritical' scaling behaviour of  $R_N^2$  is anticipated:

$$R_N^2 \approx N^{2\nu_t} F(\Delta \varepsilon N^{\phi}) \tag{1.7}$$

where  $\Delta \varepsilon = \varepsilon - \varepsilon_t$ .

Verification of the above 'maximal' set of theoretical predictions by approximation methods or numerical techniques encountered substantial difficulties. Let us mention first the issue of the nature of the collapsed phase. Several authors attempted to understand the properties of the most compact walks which dominate for  $\varepsilon \gg \varepsilon_t$ . Studies by Nagle (1974, 1985), Gujrati (1982) and Schmalz *et al* (1984) (see also references cited therein) indicate that the collapsed walks have a finite entropy (per step) and may have non-trivial properties which are not fully understood. Unfortunately, our series analysis study reported in the next two sections produces no useful results in the 'collapsed' regime.

In the  $\theta$  regime, one is interested in validating the scaling relation (1.7) and estimating  $\nu_t$  and  $\phi$ . In three dimensions, scaling behaviours are complicated by logarithmic corrections since d = 3 is the upper critical dimensionality for 'tricriticality': for numerical work see Rapaport (1974, 1977), Webman *et al* (1981), Kremer *et al* (1982), Bishop and Michels (1986) and references therein. However, we consider the two-dimensional  $\theta$  point model here.  $\varepsilon$  expansions to the next-to-zeroth order by Stephen and McCauley (1973) and Stephen (1975) gave

$$2\nu_t \simeq 1.01$$
  $\phi \simeq 0.636$  (1.8)

in d = 2. Kholodenko and Freed (1984) arrived at a different result, namely

$$2\nu_t \simeq 1.10.$$
 (1.9)

Ishinabe (1985) estimated

$$2\nu_t \simeq 1.006 \pm 0.02 \tag{1.10}$$

by series analysis of the square lattice endpoint distribution data. However, Derrida and Saleur (1985) proposed

$$2\nu_t \simeq 1.10 \pm 0.02 \tag{1.11}$$

from finite-size scaling studies of lattice strips. Monte Carlo work by Tobochnik *et al* (1982) and Baumgärtner (1982) did not lead to definitive exponent estimates. Baumgärtner (1982) reports consistency with the scaling form (1.7) provided exponent values (1.8) are used.

Our study was motivated in part by the above uncertainty in the  $\theta$  point exponent values. In §§ 2 and 3, we report series analyses leading to

$$2\nu_t = 1.07 \pm 0.05$$
  $\phi = 0.64 \pm 0.05.$  (1.12)

However, it should be pointed out that the experimental  $\nu$  value of Vilanove and Rondelez (1980) for d = 2 linear polymers which are *probably* in a semi-collapsed state is

$$2\nu = 1.12 \pm 0.02. \tag{1.13}$$

Furthermore, Coniglio *et al* (1985) recently advanced some non-rigorous arguments for  $\nu_t$  being equal to  $\nu(IGSAW)$ . The value of the latter exponent is

$$2\nu(IGSAW) = 1.134 \pm 0.006 \tag{1.14}$$

according to Kremer and Lyklema (1985). Finally, note that some further concluding discussion may be found in § 3.

## 2. Triangular lattice series

We describe here the derivation of the series and also analyses of the global features of the data. The calculation involved a computer enumeration of the number, c(N, B), and the sum of the squared end-to-end distances, s(N, B), of all N-step saw having exactly B nearest-neighbour pairs. Relation (1.2) reduces to

$$R_N^2 = \left(\sum_B s(n, B) \varepsilon^B\right) \left(\sum_B c(N, B) \varepsilon^B\right)^{-1}.$$
 (2.1)

The values of c(N, B) and s(N, B) for  $N \le 16$  are listed in table 1 for the triangular lattice. We have similar data for  $N \le 21$  for the square lattice (not reported here, but available upon request). However, due to the usual strong even-odd oscillations in various estimates, we found the square lattice data of this length unsuitable for an unambiguous analysis. While our work was in progress, we learned that Ishinabe (1985) enumerated a related distribution of the end-to-end distances, to order N = 20, on the square lattice. His  $\nu_t$  estimate (1.10) is reasonably consistent with (1.8) and (1.12). Let us focus on the triangular lattice data from now on.

We form effective exponent estimates:

$$2\nu(N) = \ln(R_N^2/R_{N-1}^2)/\ln(N/N-1).$$
(2.2)

These are plotted for  $0 < \varepsilon < 4$  in figure 1. The curves for N = 13, 14, 15, 16 are very close. However, in figure 2, we plotted the deviations from the average:

$$\Delta \nu(N) = \nu(N) - \frac{1}{4} \sum_{K=13}^{16} \nu(K)$$
(2.3)

for  $0 < \varepsilon < 3$ . For  $\varepsilon \leq 1$ , the effective exponent values are close to

$$2\nu(sAW) = 1.5$$
 (2.4)

which value is believed to be exact (Nienhuis 1982). There are two intersection regions of the  $2\nu(N)$  curves: at  $\varepsilon \approx 0.9$  and slightly below 1.5. We will discuss the intersections in detail in a moment. For  $\varepsilon \ge 1.7$ , one would anticipate some manifestation of the 'collapsed' behaviour. However, the  $2\nu(N)$  curves show no trend towards  $2\nu = 2/d = 1$ (this includes  $\varepsilon > 4$ , not shown in figure 1). Furthermore, the values of  $2\nu < 1$  are unphysical since asymptotically they would imply an infinite density. Thus, the  $N \le 16$ data are far from the regime of the asymptotic simple power-law behaviour (1.3) with (1.6). The same is true for the  $N \le 21$  square lattice data, in the 'collapsed' regime (see also Ishinabe 1985).

Since  $\nu(sAw) > \nu_t > 1/d$ , the  $N \to \infty$  limit of the  $\nu(N)$  in (2.2) is, ideally, a step function. The curves in figure 1 indeed resemble a rounded step, at least for  $\varepsilon < 2.3$ . It is well known that the intersections of the finite-N curves approximate  $\nu_t$  and  $\varepsilon_t$ . If relation (1.7) were exact, the  $\nu(N)$  would intersect at  $(\varepsilon_t, \nu_t)$ . However, (1.7) is

| N                 | B  | c(N, B)/6           | s(N, B)/6        |
|-------------------|----|---------------------|------------------|
| 1                 | 1  | 1                   | 1                |
| 2                 | 2  | 3                   | 10               |
| 2                 | 3  | 2                   | 2                |
| 3                 | 3  | 9                   | 59               |
| 3                 | 4  | 8                   | 28               |
| 3                 | 5  | 6                   | 10               |
| 4                 | 4  | 27                  | 280              |
| 4                 | 5  | 32                  | 218              |
| 4                 | 6  | 24                  | 110              |
| 4                 | 7  | 20                  | 46               |
| 5                 | 5  | 79                  | 1 179            |
| 5                 | 6  | 122                 | 1 282            |
| 5                 | 7  | 108                 | 874              |
| 5                 | 8  | 76                  | 440              |
| 5                 | 9  | 70                  | 202              |
| 6                 | 6  | 233                 | 4 614            |
| 6                 | 7  | 422                 | 6 416            |
| 6                 | 8  | 470                 | 5 472            |
| 6                 | 9  | 366                 | 3 512            |
| 6                 | 10 | 264                 | 1 778            |
| 6                 | 11 | 216                 | 798              |
| 6                 | 12 | 20                  | 34               |
| 7                 | 7  | 679                 | 17 145           |
| 7                 | 8  | 1 458               | 29 148           |
| 7                 | 9  | 1 766               | 29 356           |
| 7                 | 10 | 1 746               | 22 666           |
| 7                 | 11 | 1 322               | 14 274           |
| 7                 | 12 | 848                 | 6 7 5 6          |
| 7                 | 13 | 672                 | 3 068            |
| 7                 | 14 | 156                 | 408              |
| 8                 | 8  | 1983                | 61 398           |
| 8                 | 9  | 4 824               | 123 198          |
| 8                 | 10 | 6758                | 143 892          |
| 8                 | 11 | 6 902               | 126 198          |
| 8                 | 12 | 6 5 3 6             | 93 608           |
| 8                 | 13 | 4 642               | 55 602           |
| 8                 | 14 | 2 760               | 25 336           |
| ð                 | 15 | 2 060               | 11912            |
| 0                 | 10 | 890                 | 2 938            |
| 9                 | 10 | 5759                | 213 /05          |
| <b>y</b>          | 10 | 13 824              | 494 610          |
| 9                 | 11 | 24 290              | 654 390          |
| 9                 | 12 | 28 310              | 648 270          |
| 9                 | 15 | 20 898              | 333 360          |
| 7<br>0            | 14 | 25 400<br>16 470    | 3/1/234          |
| 7<br>0            | 15 | 10 4/8              | 213 284          |
| <del>ر</del><br>۵ | 10 | 9 000<br>6 909      | 90 004<br>40 000 |
| 7                 | 18 | 2 5 2 7             | 40 060           |
| 7<br>0            | 10 | <i>3 332</i><br>200 | 14/24            |
| 10                | 10 | 370<br>16 717       | 10/8             |
| 10                | 11 | 50 909              | 1 007 224        |
| 10                | 12 | JU 070<br>86 206    | 1 901 224        |
| 10                | 14 | 086.00              | 2 020430         |

**Table 1.** The values of c(N, B) and s(N, B) for the triangular lattice (definitions are given in the first paragraph of § 2).

Table 1. (continued)

| N  | B  | c(N, B)/6 | s(N, B)/6   |
|----|----|-----------|-------------|
| 10 | 13 | 107 900   | 3 092 612   |
| 10 | 14 | 114 940   | 2 823 622   |
| 10 | 15 | 101 628   | 2 170 648   |
| 10 | 16 | 82 360    | 1 438 478   |
| 10 | 17 | 58 074    | 814 108     |
| 10 | 18 | 31 770    | 380 694     |
| 10 | 19 | 22 100    | 187 298     |
| 10 | 20 | 12 606    | 65 282      |
| 10 | 21 | 3 472     | 12 720      |
| 11 | 11 | 48 387    | 2 432 583   |
| 11 | 12 | 162 158   | 7 124 122   |
| 11 | 13 | 299 210   | 11 637 124  |
| 11 | 14 | 406 820   | 13 996 112  |
| 11 | 15 | 457 252   | 13 912 864  |
| 11 | 16 | 448 830   | 11 812 076  |
| 11 | 17 | 376 962   | 8 609 946   |
| 11 | 18 | 288 266   | 5 504 916   |
| 11 | 19 | 205 522   | 3 155 826   |
| 11 | 20 | 116 108   | 1 512 224   |
| 11 | 21 | 71 966    | 714 902     |
| 11 | 22 | 42 944    | 281 012     |
| 11 | 23 | 19 414    | 86 854      |
| 11 | 24 | 984       | 3 296       |
| 12 | 12 | 139 897   | 8 014 812   |
| 12 | 13 | 510 966   | 25 930 666  |
| 12 | 14 | 1 021 548 | 46 357 226  |
| 12 | 15 | 1 489 314 | 60 608 222  |
| 12 | 10 | 1 /96 284 | 63 162 320  |
| 12 | 10 | 1 857 530 | 39 881 030  |
| 12 | 18 | 1 708 278 | 4/ 938 202  |
| 12 | 19 | 1 377 372 | 33 371 330  |
| 12 | 20 | 720.020   | 21 207 402  |
| 12 | 21 | /20 920   | 5 067 084   |
| 12 | 22 | 428 574   | 2 757 252   |
| 12 | 23 | 150 838   | 1 211 560   |
| 12 | 25 | 78 336    | 427 044     |
| 12 | 26 | 15 216    | 63 454      |
| 13 | 13 | 403 771   | 26 082 721  |
| 13 | 14 | 1 597 412 | 07 378 774  |
| 13 | 15 | 3 435 010 | 179 367 758 |
| 13 | 16 | 5 359 986 | 253 158 606 |
| 13 | 17 | 6 855 400 | 292 266 230 |
| 13 | 18 | 7 555 808 | 288 770 016 |
| 13 | 19 | 7 318 950 | 249 227 882 |
| 13 | 20 | 6 385 058 | 190 558 434 |
| 13 | 21 | 5 025 528 | 130 606 314 |
| 13 | 22 | 3 666 222 | 81 666 880  |
| 13 | 23 | 2 524 966 | 46 790 946  |
| 13 | 24 | 1 555 802 | 23 432 180  |
| 13 | 25 | 861 174   | 11 046 444  |
| 13 | 26 | 516 332   | 4 963 332   |
| 13 | 27 | 286 056   | 1 902 572   |
| 13 | 28 | 103 164   | 523 272     |
| 13 | 29 | 5 142     | 21 026      |
|    |    |           |             |

| Table | 1. | (continued) |
|-------|----|-------------|

| N  | В        | c(N, B)/6                    | s(N, B)/6      |
|----|----------|------------------------------|----------------|
| 14 | 14       | 1 164 057                    | 83 994 856     |
| 14 | 15       | 4 957 204                    | 323 205 792    |
| 14 | 16       | 11 413 472                   | 677 195 416    |
| 14 | 17       | 18 960 690                   | 1 025 865 544  |
| 14 | 18       | 25 681 992                   | 1 264 787 622  |
| 14 | 19       | 29 875 510                   | 1 333 923 906  |
| 14 | 20       | 30 682 280                   | 1 232 690 046  |
| 14 | 21       | 28 185 274                   | 1 011 553 284  |
| 14 | 22       | 23 711 714                   | 750 394 112    |
| 14 | 23       | 18 301 294                   | 506 326 906    |
| 14 | 24       | 13 140 314                   | 313 400 192    |
| 14 | 25       | 8 899 388                    | 179 106 248    |
| 14 | 26       | 5 597 540                    | 92 487 766     |
| 14 | 27       | 3 193 382                    | 44 486 780     |
| 14 | 28       | 1 /86 220                    | 19 951 430     |
| 14 | 29       | 1 00 / 908                   | 8 226 906      |
| 14 | 30       | 495 932                      | 2 983 836      |
| 14 | 15       | 2 3 5 1 8 0 1                | 382 /00        |
| 15 | 15       | 15 290 564                   | 1 112 469 250  |
| 15 | 10       | 15 285 504                   | 2 503 765 484  |
| 15 | 18       | 66 121 822                   | 4 050 807 564  |
| 15 | 10       | 94 507 440                   | 5 300 582 442  |
| 15 | 20       | 115 778 668                  | 5 945 584 376  |
| 15 | 21       | 125 093 030                  | 5 841 698 720  |
| 15 | 22       | 121 351 606                  | 5 114 269 874  |
| 15 | 23       | 107 169 414                  | 4 047 955 194  |
| 15 | 24       | 87 694 004                   | 2 935 087 140  |
| 15 | 25       | 66 494 840                   | 1 953 540 554  |
| 15 | 26       | 47 101 304                   | 1 199 211 312  |
| 15 | 27       | 31 745 210                   | 689 498 134    |
| 15 | 28       | 20 026 096                   | 363 448 246    |
| 15 | 29       | 11 808 450                   | 178 109 300    |
| 15 | 30       | 6 421 932                    | 80 982 364     |
| 15 | 31       | 3 579 698                    | 35 048 326     |
| 15 | 32       | 1 949 932                    | 13 991 636     |
| 15 | 33       | 587 184                      | 3 405 708      |
| 15 | 34       | 35 384                       | 173 532        |
| 16 | 16       | 9 641 893                    | 848 778 926    |
| 16 | 17       | 46 899 988                   | 3 785 135 088  |
| 16 | 18       | 122 202 704                  | 9 091 075 422  |
| 16 | 19       | 227 692 466                  | 15 642 072 152 |
| 16 | 20       | 342 473 560                  | 21 712 426 778 |
| 16 | 21       | 440 443 600                  | 25 705 217 072 |
| 16 | 22       | 499 333 190                  | 26 713 469 364 |
| 16 | 23       | 508 231 584                  | 24 784 985 438 |
| 16 | 24       | 471 901 204                  | 20 830 892 272 |
| 16 | 25       | 404 056 292                  | 16 036 287 726 |
| 16 | 26       | 323 099 256                  | 11 408 053 556 |
| 10 | 2/       | 241 147 298                  | 7 504 464 182  |
| 10 | 28       | 169 48 / 916                 | 4 598 991 504  |
| 10 | 29       | 113 922 330                  | 2 0 38 209 098 |
| 10 | 3U<br>21 | 880 U8 / 1 /<br>880 U8 / 1 / | 1 420 524 978  |
| 10 | 21       | 43 080 988                   | 107 /01 386    |

Table 1. (continued)

| N  | B  | c(N, B)/6  | s(N, B)/6   |  |
|----|----|------------|-------------|--|
| 16 | 32 | 23 985 674 | 333 080 874 |  |
| 16 | 33 | 12 803 518 | 145 981 378 |  |
| 16 | 34 | 7 139 838  | 61 304 358  |  |
| 16 | 35 | 3 043 860  | 20 594 620  |  |
| 16 | 36 | 515 134    | 2 974 792   |  |



Figure 1. Effective  $2\nu$  estimates as functions of  $\varepsilon$  for  $N = 13, \ldots, 16$  (see relation (2.2)).

only approximate for finite N. A natural interpretation is to identify the intersection region at  $\varepsilon > 1$  with the centre of the  $\theta$  region. Thus

$$\varepsilon_t \simeq 1.5(\pm 0.1) \tag{2.5}$$

for the triangular lattice. The appropriate intersection points of  $\nu(N)$  with  $\nu(N-1)$ are listed in table 2, for  $N = 8, 9, \ldots, 16$ . The sequences of this sort are frequently used in ratio-type series analyses and in phenomenological renormalisation calculations. In the present case, however, the behaviour is not regular so that the conventional extrapolation methods cannot be employed. We will devise an appropriate procedure in § 3, to accurately estimate  $\nu_t$  (and also  $\phi$ ).

Intersections at  $\varepsilon < 1$  occur well within the self-avoiding regime, at least for  $N \le 16$ . A possible interpretation is that one or several correction-to-scaling terms change sign at  $\varepsilon \simeq 0.9$ . There is an ambiguity, however, because the  $2\nu$  coordinates of the intersection points, listed in table 2, drift monotonically away from the conjectured exact value (2.4)  $2\nu = 1.5$ , as N increases. At  $\varepsilon = 1$ , for ordinary sAW, elaborate series analyses (Djordjevic et al 1983, Privman 1984) of the triangular lattice data, with allowance for corrections to scaling, found no inconsistency with  $2\nu \equiv 1.5$ . We conclude that the intersection region at  $\varepsilon \simeq 0.9$  may be an artificial feature. It may disappear



Figure 2. Deviations  $2\Delta\nu$  (defined by (2.3)) as functions of  $\varepsilon$  for N = 13, ..., 16.

**Table 2.**  $(\varepsilon, 2\nu)$  coordinates at the intersections of  $\nu(N)$  and  $\nu(N-1)$  curves (defined by relation (2.2)).

| Ν  | ε         | 2ν        | ε         | $2\nu$    |
|----|-----------|-----------|-----------|-----------|
| 8  | 1.299 979 | 1.310 288 | 0.799 248 | 1.510 766 |
| 9  | 1.255 858 | 1.333 753 | 0.824 721 | 1.505 114 |
| 10 | 1.503 892 | 1.180 515 | 0.851 098 | 1.499 420 |
| 11 | 1.345 913 | 1.283 589 | 0.865 564 | 1.496 375 |
| 12 | 1.378 098 | 1.262 038 | 0.876 563 | 1.494 153 |
| 13 | 1.449 901 | 1.209 753 | 0.884 996 | 1.492 527 |
| 14 | 1.416 490 | 1.235 155 | 0.890 724 | 1.491 476 |
| 15 | 1.438 220 | 1.218 080 | 0.895 131 | 1.490 711 |
| 16 | 1.469 684 | 1.192 091 | 0.898 298 | 1.490 191 |

or drift into the  $\theta$  region for higher N values: further numerical studies are needed to clarify this issue. Let us point out that previous studies in d = 2 (Baumgärtner 1982, Derrida and Saleur 1985, Ishinabe 1985) explored only the region  $\varepsilon > 1$ , corresponding to negative energy E in (1.1).

#### 3. $\theta$ point exponents

The  $2\nu$  sequence corresponding to  $\varepsilon > 1$  in table 2 is rather irregular. The overall trend is toward  $2\nu$  values below 1.2. However, the oscillations show no definite pattern. By the well known principle, since we cannot 'beat' the irregularities by conventional extrapolation techniques, let us 'join' them! We adopt the strategy of calculating a very large number of approximants to  $2\nu_t$ , with an expectation that what was an irregularity in a particular sequence will become a spread in the values of  $2\nu$ . Thus we generalise (2.2) to

$$2\nu(N,k) = \ln(R_N^2/R_{N-k}^2) / \ln(N/N-k).$$
(3.1)

We then calculate the  $2\nu$  coordinate of the appropriate intersection point (if it exists) of  $2\nu(N, k)$  with  $2\nu(N', k')$ , for all possible combinations of different (N, k) pairs with N',  $N = 12, \ldots, 16$  and k',  $k = 1, \ldots, 4$ . In figure 3 more than 200 such points are plotted against  $1/N_{\text{eff}}$ , where

$$N_{\rm eff} = \frac{1}{2}(N+N'). \tag{3.2}$$

This choice is the simplest symmetric combination. We use N, but not k, in (3.2) because empirically the  $2\nu(N, k)$  curves are much less sensitive to k than to N, provided  $k \ll N$ .



Figure 3. Estimates of  $2\nu_1$  against  $1/N_{\text{eff}}$  defined in § 3.

Figure 3 is rather difficult to read in detail because the points are very close. However, we examined a considerably enlarged version of it; we located the most populated range of  $2\nu$  for each  $1/N_{\text{eff}}$  value and extrapolated linearly to  $1/N_{\text{eff}} = 0$ . We propose

$$2\nu_t = 1.07 \pm 0.05. \tag{3.3}$$

In order to estimate the crossover exponent  $\phi$  in (1.7), we consider the derivative  $\partial R_N^2/\partial \varepsilon$  which obeys the scaling law

$$\partial R_N^2 / \partial \varepsilon \approx N^{2\nu_t + \phi} G(\Delta \varepsilon N^{\phi}).$$
 (3.4)

Since, by all the estimates described in § 1,  $2\nu_t + \phi > 1.6$ , the effective exponent values defined in analogy with (3.1) now approximate not a rounded step, but a rounded non-symmetric peak. This expectation is, indeed, confirmed by plotting several  $(2\nu_t + \phi)(N, k)$  against  $\varepsilon$  curves. (This plot is not presented here.) However, these peaked

effective exponent curves, for different (N, k), typically do not intersect for  $N \le 16$  and when they do, regarding the intersection coordinates as an approximation to  $2\nu_t + \phi$ is ambiguous. In view of the above, we used the intersection points of  $\nu(N, k)$ , the same as in figure 3. At the  $\varepsilon$  value of the intersection of  $\nu(N, k)$  with  $\nu(N', k')$ , where now  $N \ge N'$  is imposed, we calculated

$$\ln\left(\frac{\partial R_N^2/\partial \varepsilon}{\partial R_{N-k}^2/\partial \varepsilon}\right) \left[\ln\left(\frac{N}{N-k}\right)\right]^{-1} - 2\nu(N,k)$$
(3.5)

which approximates the exponent  $\phi$ . Here  $N \ge N'$  is needed explicitly since we preferred to use non-symmetric approximants giving more weight to less truncated series. The resulting  $\phi$  values are plotted against  $1/N_{\text{eff}}$  in figure 4. As with  $2\nu_t$ , we actually used an enlarged version to extrapolate towards  $1/N_{\text{eff}} = 0$ : we get

$$\phi = 0.64 \pm 0.05. \tag{3.6}$$

In summary, we have demonstrated that series enumerations can be used to study the  $\theta$  point phenomena. Our results are conclusive in the sAw and  $\theta$  regimes, confirming the 'tricritical' theoretical picture (de Gennes 1979). We reported the first numerical estimation of the exponent  $\phi$  in d = 2. Our  $2\nu_t$  and  $\phi$  ranges are close to the  $\varepsilon$ expansion values. The  $2\nu_t$  estimate is consistent with those of Ishinabe (1985) and Derrida and Saleur (1985).



Figure 4. Estimates of  $\phi$  against  $1/N_{\text{eff}}$ , see (3.5).

# Acknowledgments

The author wishes to acknowledge instructive discussions with Professors F Family and L S Schulman.

## References

Baumgärtner A 1982 J. Physique 43 1407-11 Bishop M and Michels J P J 1986 J. Chem. Phys. in press Coniglio A, Jan N, Majid I and Stanley H E 1985 Preprint de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press) Derrida B and Saleur H 1985 J. Phys. A: Math. Gen. 18 L1075-9 Diordievic Z V, Majid I, Stanley H E and dos Santos R J 1983 J. Phys. A: Math. Gen. 16 L519-23 Gujrati P D 1982 J. Stat. Phys. 28 441-72 Ishinabe T 1985 J. Phys. A: Math. Gen. 18 3181-7 Kholodenko A L and Freed K F 1984 J. Chem. Phys. 80 900-24 Kremer K, Baumgärtner A and Binder K 1982 J. Phys. A: Math. Gen. 15 2879-97 Kremer K and Lyklema J W 1985 J. Phys. A: Math. Gen. 18 1515-31 Nagle J F 1974 Proc. R. Soc. A 337 569-89 ---- 1985 J. Stat. Phys. 38 531-40 Nienhuis B 1982 Phys. Rev. Lett. 49 1062-5 Privman V 1984 Physica 123A 428-42 Rapaport D C 1974 Phys. Lett. 48A 339-40 - 1977 J. Phys. A: Math. Gen. 10 637-47 Schmalz T G, Hite G E and Klein D J 1984 J. Phys. A: Math. Gen. 17 445-53 Stephen M J 1975 Phys. Lett. 53A 363-4 Stephen M J and McCauley J L 1973 Phys. Lett. 44A 89-90 Tobochnik J, Webman I, Lebowitz J L and Kalos M H 1982 Macromol. 15 549-53

Vilanove R and Rondelez F 1980 Phys. Rev. Lett. 45 1502-4

Webman I, Lebowitz J L and Kalos M H 1981 Macromol. 14 1495-501