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Study of the 8 point by enumeration of self-avoiding walks on 
the triangular lattice 
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Department of Physics, Clarkson University, Potsdam, New York 13676, USA 

Received 21 January 1986 

Abstract. We report series expansion analyses of the self-avoiding walks with nearest- 
neighbour bond interactions. The estimates 2v, = 1.07 *0.05 and & = 0.64i0.05 for the 
correlation and crossover exponents at the 0 point were obtained by examining the number 
of walks and the end-to-end distance data up to 16 steps on the triangular lattice. 

1. Introduction 

The collapse transition of linear polymers has been subject to numerous theoretical 
investigations: see a review in de Gennes’ (1979) book (more recent literature will be 
cited below). Specifically, let us concentrate on the standard lattice model of this 
phenomenon. An N-step self-avoiding walk (SAW) connects N + 1 lattice sites. Let E 
denote the number of nearest-neighbour pairs among these N +  1 sites and assign a 
Boltzmann factor E per pair. Usually, only an excess number of nearest-neighbour 
bonds, E - N, is counted (see, e.g., Baumgartner 1982) and with 

E = exp( - E /  k T )  (1.1) 

the energy E models repulsion ( E  > 0, 0 < E < 1) or attraction ( E  < 0, E > 1) at every 
contact of the chain with itself. However, we will not expand on the details of the 
interpretation: we assign a factor with 0 < E < m. 

For a given SAW, w, let r( w )  denote the end-to-end distance, 1 w (  denote the number 
of steps and B ( w )  the number of nearest-neighbour pairs of sites as described above. 
Then we can form a weighted RMS end-to-end distance of N-step walks, (RL)”*, via 

For convenience, we will omit ( ) in the remainder of the paper. 
It is generally believed that for large N, 

R L -  N2’ 

where 

V = V(SAW) 

v = v, 

v = l / d  for E > E,. 

for O <  E < E ,  

at E = E ,  
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The range (1.4) corresponds to the ‘excluded volume’ regime of repulsion or weak 
attiaction. The range (1.6) corresponds to a ‘collapsed’ strongly self-attracting chain. 
On the borderline ( l S ) ,  a special 0 point growth exponent v, is expected. Near e l ,  a 
‘tricritical’ scaling behaviour of R L  is anticipated: 

R L  = N*”~F(AEN’)  

where A &  = E - E , .  

Verification of the above ‘maximal’ set of theoretical predictions by approximation 
methods or numerical techniques encountered substantial difficulties. Let us mention 
first the issue of the nature of the collapsed phase. Several authors attempted to 
understand the properties of the most compact walks which dominate for E >> E , .  Studies 
by Nagle (1974, 1985), Gujrati (1982) and Schmalz et a1 (1984) (see also references 
cited therein) indicate that the collapsed walks have a finite entropy (per step) and 
may have non-trivial properties which are not fully understood. Unfortunately, our 
series analysis study reported in the next two sections produces no useful results in 
the ‘collapsed’ regime. 

In the 0 regime, one is interested in validating the scaling relation (1.7) and 
estimating v, and 4. In three dimensions, scaling behaviours are complicated by 
logarithmic corrections since d = 3 is the upper critical dimensionality for ‘tricriticality’: 
for numerical work see Rapaport (1974, 1977), Webman et al (1981), Kremer et a1 
(1982), Bishop and Michels (1986) and references therein. However, we consider the 
two-dimensional 0 point model here. E expansions to the next-to-zeroth order by 
Stephen and McCauley (1973) and Stephen (1975) gave 

2v, = 1.01 4 -- 0.636 (1.8) 

in d = 2. Kholodenko and Freed (1984) arrived at a different result, namely 

2v1 2 1.10, (1.9) 

Ishinabe (1985) estimated 

2 v, = 1.006 * 0.02 (1.10) 

by series analysis of the square lattice endpoint distribution data. However, Derrida 
and Saleur (1985) proposed 

2v, = 1.10*0.02 (1.11) 

from finite-size scaling studies of lattice strips. Monte Carlo work by Tobochnik et a1 
(1982) and Baumgartner (1982) did not lead to definitive exponent estimates. 
Baumgartner (1982) reports consistency with the scaling form (1.7) provided exponent 
values (1.8) are used. 

Our study was motivated in part by the above uncertainty in the 0 point exponent 
values. In 0 0  2 and 3, we report series analyses leading to 

2v, = 1.07*0.05 4 = 0.64 f 0.05. (1.12) 

However, it should be pointed out that the experimental v value of Vilanove and 
Rondelez (1980) for d = 2  linear polymers which are probably in a semi-collapsed 
state is 

2 v =  1.12*0.02. (1.13) 
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Furthermore, Coniglio et a1 (1985) recently advanced some non-rigorous arguments 
for v, being equal to ~ ( I G S A W ) .  The value of the latter exponent is 

~ ~ ( I G S A W )  = 1.134*0.006 (1.14) 

according to Kremer and Lyklema (1985). Finally, note that some further concluding 
discussion may be found in 9 3. 

2. Triangular lattice series 

We describe here the derivation of the series and also analyses of the global features 
of the data. The calculation involved a computer enumeration of the number, c( N, B ) ,  
and the sum of the squared end-to-end distances, s ( N ,  B ) ,  of all N-step SAW having 
exactly E nearest-neighbour pairs. Relation (1.2) reduces to 

The values of c(N, B )  and s ( N ,  23) for N S  16 are listed in table 1 for the triangular 
lattice. We have similar data for N 6 21 for the square lattice (not reported here, but 
available upon request). However, due to the usual strong even-odd oscillations in 
various estimates, we found the square lattice data of this length unsuitable for an 
unambiguous analysis. While our work was in progress, we learned that Ishinabe 
(1985) enumerated a related distribution of the end-to-end distances, to order N = 20, 
on the square lattice. His v, estimate (1.10) is reasonably consistent with (1.8) and 
(1.12). Let us focus on the triangular lattice data from now on. 

We form effective exponent estimates: 

2v( N )  = In( ~ 2 , /  RZN-l)/ln( N /  N - 1). (2.2) 

These are plotted for O <  E < 4  in figure 1. The curves for N = 13, 14, 15, 16 are very 
close. However, in figure 2, we plotted the deviations from the average: 

16 

h v ( N ) = ~ ( N ) - f  1 v ( K )  
K = 1 3  

(2.3) 

for 0 < E < 3. For E s 1, the effective exponent values are close to 

2V(SAW) = 1.5 (2.4) 

which value is believed to be exact (Nienhuis 1982). There are two intersection regions 
of the 2 4  N)  curves: at E = 0.9 and slightly below 1.5. We will discuss the intersections 
in detail in a moment. For E B 1.7, one would anticipate some manifestation of the 
‘collapsed’ behaviour. However, the 2v( N) curves show no trend towards 2v = 2 /d  = 1 
(this includes E > 4, not shown in figure 1). Furthermore, the values of 2v < 1 are 
unphysical since asymptotically they would imply an infinite density. Thus, the N s 16 
data are far from the regime of the asymptotic simple power-law behaviour (1.3) with 
(1.6). The same is true for the N s 2 1  square lattice data, in the ‘collapsed’ regime 
(see also Ishinabe 1985). 

Since V(SAW)> v, > l/d, the N + m  limit of the v ( N )  in (2.2) is, ideally, a step 
function. The curves in figure 1 indeed resemble a rounded step, at least for E < 2.3. 
It is well known that the intersections of the finite-N curves approximate vt and E , .  

If relation (1.7) were exact, the v ( N )  would intersect at ( E , ,  v,). However, (1.7) is 
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Table 1. The values of c( N, B) and s( N, 8 )  for the triangular lattice (definitions are given 
in the first paragraph of 0 2). 

N B  c ( N ,  BY6 s ( N ,  B)/6 

1 
2 
2 
3 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
8 
8 
8 
8 
8 
8 
8 
8 
8 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 

10 
10 
10 

1 
2 
3 
3 
4 
5 
4 
5 
6 
7 
5 
6 
7 
8 
9 
6 
7 
8 
9 

10 
11 
12 
7 
8 
9 

10 
11 
12 
13 
14 
8 
9 

10 
11 
12 
13 
14 
15 
16 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
10 
11 
12 

1 
3 
2 
9 
8 
6 

27 
32 
24 
20 
79 

122 
108 
76 
70 

233 
422 
470 
366 
264 
216 
20 

679 
1458 
1766 
1746 
1322 

848 
672 
156 

1983 
4 824 
6 758 
6 902 
6 536 
4 642 
2 760 
2 060 

890 
5 759 

15 824 
24 290 
28 310 
26 898 
23 400 
16 478 
9000 
6 808 
3 532 

390 
16 717 
50 898 
86 396 

1 
10 
2 

59 
28 
10 

280 
218 
110 
46 

1179 
1282 

874 
440 
202 

4 614 
6 416 
5 472 
3 512 
1778 

798 
34 

17 145 
29 148 
29 356 
22 666 
14 274 
6 756 
3 068 

408 
61 398 

123 198 
143 892 
126 198 
93 608 
55 602 
25 336 
11 912 
2 938 

213 705 
494 610 
654 390 
648 270 
533 360 
371 234 
213 284 
96 004 
48 080 
14 724 

1078 
727 506 

1 907 224 
2 820456 
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Table 1. (continued) 

10 
10 
10 
10 
10 
10 
10 
10 
10 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 

13 
14 
15 
16 
17 
18 
19 
20 
21 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

107 900 
114 940 
101 628 
82 360 
58 074 
31 770 
22 100 
12 606 
3 472 

48 387 
162 158 
299 210 
406 820 
457 252 
448 830 
376 962 
288 266 
205 522 
I16 108 
71 966 
42 944 
19 414 

984 
139 897 
510966 

1021 548 
1489 314 
1 796 284 
1857 536 
1 708 278 
1377 572 
1 024 262 

720 920 
428 574 
239 660 
150 838 
78 336 
15 216 

403 771 
1 597 412 
3 435 010 
5 359 986 
6 855 400 
7 555 808 
7 318 950 
6 385 058 
5 025 528 
3 666 222 
2 524 966 
1555 802 

861 174 
516 332 
286 056 
103 164 

5 142 

3 092 612 
2 823 622 
2 I70 648 
1 438 478 

814 108 
380 694 
187 298 
65 282 
12 720 

2 432 583 
7 124 122 

11 637 124 
13 996 112 
13 912 864 
11 812 076 
8 609 946 
5 504 916 
3 155 826 
1 512 224 

714 902 
281 012 

86 854 
3 296 

8 014 812 
25 930 666 
46 357 226 
60 608 222 
65 162 520 
59 881 630 
47 958 262 
33 571 350 
21 207 402 
12 190 756 
5 967 984 
2 757 352 
1211 560 

427 044 
63 454 

26 082 721 
92 378 774 

179 367 758 
253 158 606 
292 266 230 
288 770 016 
249 227 882 
I90 558 434 
130 606 314 
81 666 880 
46 790 946 
23 432 180 
11046444 
4 963 332 
1 902 572 

523 272 
21 026 
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Table 1. (continued) 

14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

1164057 
4 957 204 

11413472 
18 960 690 
25 681 992 
29 875 510 
30 682 280 
28 185 274 
23 711 714 
18 301 294 
13 140 314 
8 899 388 
5 597 540 
3 193 382 
1 786 220 
1 007 908 

495 932 
77 704 

3 351 801 
15 289 564 
37 520 218 
66 121 822 
94 507 440 

115778668 
125 093 030 
121 351 606 
107 169 414 
87 694 004 
66 494 840 
47 101 304 
31 745 210 
20 026 096 
11 808 450 
6 421 932 
3 579 698 
1 949 932 

587 184 
35 384 

9 641 893 
46 899 988 

122 202 704 
227 692 466 
342 473 560 
440 443 600 
499 333 190 
508 231 584 
471 901 204 
404 056 292 
323 099 256 
241 147 298 
169 487 916 
113 922 336 
71 780 088 
43 086 988 

83 994 856 
323 205 792 
677 195 416 

1 025 865 544 
1264787622 
1 333 923 906 
1 232 690 046 
1011 553 284 

750 394 112 
506 326 906 
313 400 192 
179 106 248 
92 487 766 
44 486 780 
19 951 430 
8 226 906 
2 983 856 

382 760 
268 058 345 

1 113 468 250 
2503765484 
4050807564 
5 309 582 442 
5945584376 
5841698720 
5 114 269 874 
4047955194 
2935087140 
1953540554 
1199211312 

689 498 134 
363 448 246 
178 109 300 
80 982 364 
35 048 326 
13 991 636 
3 405 708 

173 532 
848 778 926 

3 785 135 088 
9 091 075 422 

15 642 072 152 
21712426778 
25 705 217 072 
26 713 469 364 
24784985438 
20830892272 
16 036 287 726 
11 408 053 556 
7 504 464 182 
4 598 991 504 
2 658 209 098 
1420524978 

709 751 386 
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16 32 23 985 674 333 080 874 
16 33 12 803 518 145 981 378 
16 34 7 139 838 61 304 358 
16 35 3 043 860 20 594 620 
16 36 515  134 2 974 792 

1.6 - 

1.4 - 

1.2 - 

1.0 - 

N= 

0.8 - 

c 1 2 3 

1.6 

1.4 - 

1.2 - 

1.0 - 

N= 

0.8 - 

c 1 2 3 
E 

Figure 1. Effective 2 v  estimates as functions of E for N = 1 3 , .  . . , 16 (see relation (2.2)). 

only approximate for finite N. A natural interpretation is to identify the intersection 
region at E >  1 with the centre of the 8 region. Thus 

E ,  -- 1.5(*0.1) (2.5) 
for the triangular lattice. The appropriate intersection points of Y( N )  with Y( N - 1)  
are listed in table 2, for N = 8, 9 , .  . . , 16. The sequences of this sort are frequently 
used in ratio-type series analyses and in phenomenological renormalisation calcula- 
tions. In the present case, however, the behaviour is not regular so that the conventional 
extrapolation methods cannot be employed. We will devise an appropriate procedure 
in § 3, to accurately estimate Y, (and also 4). 

Intersections at E < 1 occur well within the self-avoiding regime, at least for N s 16. 
A possible interpretation is that one or several correction-to-scaling terms change sign 
at E = 0.9. There is an ambiguity, however, because the 2v coordinates of the intersec- 
tion points, listed in table 2, drift monotonically away from the conjectured exact 
value (2.4) 2u = 1.5, as N increases. At E = 1, for ordinary SAW, elaborate series 
analyses (Djordjevic et a1 1983, Privman 1984) of the triangular lattice data, with 
allowance for corrections to scaling, found no inconsistency with 2 Y = 1.5. We conclude 
that the intersection region at E = 0.9 may be an artificial feature. It may disappear 
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2 A V  

Figure 2. Deviations 2Au (defined by (2.3)) as functions of E for N = 13,. . . , 16. 

Table 2.  ( E ,  2u) coordinates at the intersections of U( N )  and U( N - 1) curves (defined by 
relation (2.2)). 

~~ ~ 

N E  2u E 2u 

8 1.299919 
9 1.255858 

10 1.503892 
11 1.345913 
12 1.378098 
13 1.449901 
14 1.416490 
15 1.438220 
16 1.469 684 

1.310288 
1.333 753 
1.180515 
1.283 589 
1.262 038 
1.209 753 
1.235 155 
1.218 080 
1.192 091 

0.799 248 
0.824 721 
0.851 098 
0.865 564 
0.876 563 
0.884 996 
0.890 724 
0.895 131 
0.898 298 

1.510 766 
1.505 114 
1.499 420 
1.496 375 
1.494 153 
1.492 527 
1.491 476 
1.490 71 1 
1.490 191 

or drift into the f3 region for higher N values: further numerical studies are needed 
to clarify this issue. Let us point out that previous studies in d = 2 (Baumgartner 1982, 
Demda and Saleur 1985, Ishinabe 1985) explored only the region E > 1, corresponding 
to negative energy E in (1.1). 

3. 8 point exponents 

The 2 v  sequence corresponding to E > 1 in table 2 is rather irregular. The overall trend 
is toward 2 v  values below 1.2. However, the oscillations show no definite pattern. By 
the well known principle, since we cannot ‘beat’ the irregularities by conventional 
extrapolation techniques, let us ‘join’ them! We adopt the strategy of calculating a 
very large number of approximants to 2vl, with an expectation that what was an 
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1.3 

2 v  

1.2 

1.1, 

irregularity in a particular sequence will become a spread in the values of 2v. Thus 
we generalise (2.2) to 

(3.1) 2v(  N, k) = In( R k /  Rk-k)/ln(N/ N - k). 
We then calculate the 2 v coordinate of the appropriate intersection point (if it exists) 
of 2v(N, k) with 2 v ( N ’ ,  k’), for all possible combinations of different (N, k) pairs 
with N’, N = 12,.  . . , 16  and k‘, k = 1 , .  . . ,4 .  In figure 3 more than 200 such points 
are plotted against 1/NeE, where 

Ives= $( N + N ’ ) .  (3.2) 

This choice is the simplest symmetric combination. We use N, but not k, in (3.2) 
because empirically the 2 U( N, k) curves are much less sensitive to k than to N, provided 
k<c N. 

. *  . . . 
e *  

e * :  

c 

.. - 
**. 

. 
- 

I I 1 
0 0.0 4 0.08 

Figure 3. Estimates of 2u,  against l/Nes defined in 8 3. 

Figure 3 is rather difficult to read in detail because the points are very close. 
However, we examined a considerably enlarged version of it; we located the most 
populated range of 2v for each l/Nefl value and extrapolated linearly to 1/  Nefl = 0. 
We propose 

2v, = 1.07 10.05. (3.3) 
In order to estimate the crossover exponent # in (1.7), we consider the derivative 

aR$/a& which obeys the scaling law 

aR$/a& = N ~ ” ~ ~ G ( A & N + ) .  (3.4) 
Since, by all the estimates described in 0 1, 2v, + # > 1.6, the effective exponent values 
defined in analogy with (3.1) now approximate not a rounded step, but a rounded 
non-symmetric peak. This expectation is, indeed, confirmed by plotting several (2v, + 
4 ) ( N ,  k) against E curves. (This plot is not preseited here.) However, these peaked 
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effective exponent curves, for different (N, k),  typically do not intersect for NG 16 and 
when they do, regarding the intersection coordinates as an approximation to 2v, + 4 
is ambiguous. In view of the above, we used the intersection points of v(N, k), the 
same as in figure 3. At the E value of the intersection of U( N, k) with v( N ’ ,  k’), where 
now N 3  N’ is imposed, we calculated 

In(  aR’,-k/de aR’,/aE ) [ln(&)]-’-2v(N,k) (3.5) 

which approximates the exponent 4. Here N N’ is needed explicitly since we 
preferred to use non-symmetric approximants giving more weight to less truncated 
series. The resulting 4 values are plotted against l /Neff in figure 4. As with 2ur, we 
actually used an enlarged version to extrapolate towards 1/ Neff = 0: we get 

4 = 0.64 * 0.05. (3.6) 

In summary, we have demonstrated that series enumerations can be used to study 
the 6 point phenomena. Our results are conclusive in the SAW and 8 regimes, confirming 
the ‘tricritical’ theoretical picture (de Gennes 1979). We reported the first numerical 
estimation of the exponent 4 in d = 2 .  Our 2vr and 4 ranges are close to the E 

expansion values. The 2v, estimate is consistent with those of Ishinabe (1985) and 
Demda and Saleur (1985). 

Figure 4. Estimates of 4 against l/NeB, see (3.5). 
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